



Open Source Software 14

Running head: Open Source Software

Philosophy and Realization of Open Source Software

Stefan Gueorguiev

Saint Louis University, Madrid Campus

Philosophy and Realization of Open-source Software

Nowadays many people worldwide are using computers for different purposes, but few of them know how the programs they use were written. However recently open source software is becoming more and more famous. Its philosophy is based on the free software ideology, but open source software (OSS) extends this ideology giving it a more commercial definition and also providing a business model as well as development methodology.

OSS is software whose source code is distributed and redistributed without charges and any limitations on the modifications. This ensures faster development, higher reliability and closer relationship with customers. The main advantage of OSS is that it encourages collaborative development. Thus the software can be improved faster and more easily tested, making it a highly reliable product.

 Open-source is behind a great part of the Internet. Most of the Internet’s servers use the Linux Operating System (OS), the Apache web server is the most commonly used server for web pages, and Sendmail is the most used mail transfer system on the Internet.  All of the above mentioned are products of the open-source programming. Also many companies started releasing parts of their programs as open-source software. This includes concerns like IBM, Apple (releasing part of its future operating system, MacOs X, as open-source), Netscape (releasing the source code of its popular Communicator).  Even a highly commercial company like Microsoft is thinking about releasing a part of its OS as open-source. All these examples show that open-source is becoming more and more popular amongst big software developers as a way to produce better software and to reduce the time to market a product. 

Open-source originates since the beginning of programming itself and is a product of the Hacker Ethic.  The term “hacker” itself comes from MIT, where in the 1950’s a small society formed. Members of the Tech Model Railroad Club (TMRC) and participants in MIT’s Artificial Intelligence (AI) Laboratory used the term to describe “a person who enjoys exploring the details of programmable systems”(Raymond, 2001a). The word “hack” had been used to describe a task “imbued with innovation, style, and technical virtuosity” (Levy, 1984).

The MIT hackers concentrated their attention on writing programs, first for the IBM 704 and after that for the TX-0. They spent days in the AI Lab writing programs intended to explore the limits of these machines. After that a higher generation computer arrived in the AI lab, the PDP-1 (manufactured by Digital Equipment Corporation, or DEC), the first minicomputer. The MIT hackers started writing software for this machine. That software was freely distributed by DEC to other PDP owners. This way the Hacker Ethic evolved: “access to computers – and anything which might teach you something about the way the world works – should be unlimited and total” (Levy, 1984).

This way of enthusiastic programming in order to produce effective, reliable, high-quality and innovative software was practiced not only in MIT, but also in other universities (Stanford University’s AI Lab, Carnagie-Mellon University, etc.). All those software development centers became able to communicate with each other finally through the ARPANet (Advanced Research Projects Agency Network). The ARPANet is “[t]he precursor to the Internet. Developed by the U.S. Department of Defense as an experiment in wide-area-networking that would survive a nuclear war”( Internet Connectivity Glossary , 2001). But it quickly became a big network connecting hundreds of universities and research laboratories. It allowed exchange of information (mainly software) between hackers.

Since then programmers started to develop many shared projects. Those collaborative projects included within itself, without mentioning, the Hacker Ethic.  One of the most famous of those projects was UNIX.

UNIX started its development in the AT&T Bell Labs, and it was not a freely available. But it was given to universities at a nominal price. That resulted an explosion of creativity, since programmers built on each other’s work. UNIX was written in C, a highly portable programming language. This means that UNIX could be run on different kind of machines without the need of rewriting some of its code. This was essential at that time, since computers were very different. For this reason UNIX soon became the only operating system used and C became the most widely used programming language.

However, Berkeley’s Computer Science Research Group made their own changes to UNIX and released their distribution called BSD (Berkley Standard Distribution) which included other file system, networking capabilities, virtual memory support and a variety of utilities (Ritchie, 1979). Some years after that a few of the BSD developers founded Sun Microsystems, and in 1984 for the first time UNIX was sold as a commercial product. This way it was commercialized.

This made different developers sell different distributions of UNIX with different, competing standards, which made writing portable software a very difficult task for programmers. This was the main reason for the establishment of the GNU (Gnu’s Not Unix). The initiator of the project was Richard S. Stallman, a later participant in MIT’s AI Lab and a strong believer in the Hacker Ethic. The main aim of the GNU projects was to create a free UNIX-like operating system that would also include all the necessary programs like text editors, mailers, commands, etc. (The Free Software Foundation, 2001a). To do so, Stallman created the Free Software Foundation (FSF), an organization that had the purpose of producing and developing free software and the GNU OS as a part of it (FSF, 2001b). This way lots of programmers started writing software for the FSF. Most of this software was freely available versions of major UNIX utility programs. Many of those programs became so powerful that eventually they became standard on all UNIX systems. This way the GNU project started to accomplish its goals. However it failed to do the most important thing – the UNIX-like kernel, the core of an operating system, the thing that controlled every process, the thing that made and operating system actually work. 

However the GNU project did not give up. As time passed there appeared low-cost, high-performance personal computers; also the World Wide Web had grown enormously by early 1990’s. This way the FSF community grew rapidly and projects such as Linux and Apache (the world wide famous web server) became well known for its success worldwide. This made many programmers and writers discuss the FSF.

This led to the publishing of The Cathedral and The Bazaar (Raymond, 2001b), an essay presenting the Linux development model. It was first presented at Linux Kongress 97 and after that was made available on the web. The paper presented two ways of software development: the Cathedral and the Bazaar ways of writing software. The Cathedral was used to describe the way commercial software was written: in a small, closed and centralized community. The Bazaar, on other hand, describes a programming way that includes in itself the Hacker Ethic, a software development that is done with open and cooperative efforts.

The paper had a great impact on the software arena. The essay influenced many software developers. The most obvious example is when in January 1998 Netscape announced that it would release the source code for its Web browser. This was the first time that a known company released a greatly popular commercial product as open source free software. Also, that is when the term Open Source was first legalized as a term This was done in order to prevent commercial companies from speculating with the term. 

The term “open source” has taken its definition from free software, and has extended it a bit. This is because free software was commonly misunderstood. The word free does not relate to the financial sense, but instead refers to the users’ freedom to run, copy, distribute, study, change and improve software. The confusion comes from the double meaning of the word free: no cost and freedom. “To understand the concept, you should think of free speech, not free beer,” (The Free Software Foundation, 2001c).

There exist many definitions like that one, with misleading names that are often misunderstood (e.g. free software and open source software). The most commonly used are public domain, freeware, shareware and open source. 

Free software is commonly mistaken with public domain software. If software is in the public domain, it does not have an owner and everyone could use and distribute it the way he wants. Another characteristic of the public domain is that the software is not copyrighted. If a developer publishes software in the public domain then anyone else can take the software, modify it, hide the source code and use it for commercial purposes.

Freeware is a term used to describe software that is freely distributed and can be redistributed but cannot be modified. The source code of the software is not available, that is why freeware should not be used to refer to free software.

Shareware is a bit like freeware. It is distributed freely and users can redistribute shareware, but anyone who wants to continue using it after a certain period should pay a fee. Shareware almost never comes with the source code, which is why it is not free software.

Open source is a term used to mean almost the same as free software. Free software is “software that comes with permission for anyone to use, copy and distribute, either verbatim or with modifications, either gratis or for a fee.”(The Free Software Foundation, 2001c) This means that the source code must be available. Free software is more often used in a political context. Open source, on other hand, is a more commercially oriented term. The Free Software Foundation states that free software is a right, emphasizing the ethical obligations one has when dealing with software distribution (Stallman, 2001). Open source is mostly used to describe the business case of the free software. Open source also focuses more on the development process, on how things should be done, rather than on the moral obligations of the developer.

Since the term open source has been legalized, it is obvious that open source products should be issued under a certain licenses. This way mainly the authorship of a project is mentioned. There exist several licenses for open source software. There exist differences between them, but they all should comply with the Open Source Definition. 

The Open Source Definition is not a software license. It is a list of specifications of what should be included in a software license in order to be considered open source. It is based on the Debian free software guidelines. The Open Source Definition includes the following criteria (Open Source Initiative, 2001):

1. Free Redistribution – Copies of the software can be made at no cost.

2. Source Code – The source code must be distributed with the original program, as well as with the derivatives.

3. Derived Works – Modifications are allowed and encouraged, but it is not necessary that they should be following the same license terms.

4. No Discriminations – Discriminations against any person or group is not allowed. Also restrictions preventing use of the software by certain business or area of research is forbidden.

5. Distribution of License – Any terms should apply automatically without written authorization.

6. License Must Not Be Specific to a Product – Rights attached to a program must not depend on that program being part of a specific software distribution. 

7. License Must Not Forbid Other Software – Restrictions on other software distributed with the licensed software are not allowed.

Some of the licenses that comply with the Open Source Definition are the GNU GPL, BSD, X Consortium, MPL, and Artistic licenses. The GNU’s GPL (General Public License) originates from Copyleft, which is a concept introduced by Richard Stallman in order to solve some problems that existed in the public domain. Software published in the public domain was not copyrighted, so anyone who obtained it could commercialize it by starting to sell the software without giving out the source code. That reduces the freedom that the original author provided. Copyleft says: "anyone who redistributes the software, with or without changes, must pass along the freedom to further copy and change it." (The Free Software Foundation, 2001d) In order for one program to become copylefted, first it should be copyrighted and then some specific distribution terms should be added. These terms legally provide rights to “use, modify, and redistribute the program’s code or any program derived from it but only if the distribution terms are unchanged.” (The Free Software Foundation, 2001d)

In the GNU project, copyleft and its specific terms are included in the GPL. The GPL does not allow private modifications and any changes must be released again under the GPL. This not only protects the author but also encourages collaborative development, since any improvements are made freely available. Also the GPL does not allow licensed programs to be included in proprietary software (referring to any software that does not provide as much freedom as the GPL).

The GPL has a bit of political character. In its text a big part of it is dedicated why things should be this way. It justificates and explains the obligations that one has, when releasing under the GPL. Unfortunately not many open source developers agree with all the points of the GPL. That leaded to the creation of other open source licenses.

One of them is the Artistic license. It was originally meant for Perl (popular scripting language) but later it was used for other open source projects. The license is very commercially oriented and with loose definition. For example, under some conditions modifications can be made private. Most of those conditions include the sake of the develper using the license. It gives more freedom to the main developer and author than to the users. Also although it forbidden to sell software released under the Artistic license, the software could be imported in other commercial products that could be sold.

Another license is the NPL (Netscape Public License), developed by Netscape. It creates some backdoors and special privileges for Netscape. For example NPL allows Netscape to re-license programs covered by the NPL under different terms. It also allows Netscape to use the source code released under the NPL in other Netscape products, without the need of those products being released under the same license.

  Other licenses include the X, BSD, and Apache licenses. With the growing popularity of open source, many companies try to speculate with the term, by developing commercial licenses and trying to release them under the Open Source Definition. The free software community decides and regulates which licenses could be released under those terms and which could not.

The methodology of creating open source software is unique and a phenomenon. It gathers programmers from around the world writing powerful and reliable programs with no cost. However there are some rules that one should comply with, in order to have a successful open source project. 

Eric Raymond’s paper “The Cathedral and The Bazaar” explores and describes in details the way open source programming works and its methodology. The only thing that the paper does not show well is the dynamics of the development of an open source project. In his paper Raymond explains that it is difficult to start a project in the bazaar community. To gather a community around a certain program the author first should demonstrate that it is a promising project. The beginning could be rough or incomplete, but the project must show that it has potential. This is a necessary condition for a program development to be started in the bazaar way.

Once a program is originated and a community is gathered, the developer should release early and often its product. This gives a more rapid improvement of the program and the developers are “rewarded by the sight of constant improvement in their work.” (Raymond, 2001b) Open source development relies on the Internet to shorten the production cycle of a program. The efficient distribution and fast feedback make this practice effective. However, the success of this approach highly depends on the modularity of the developed program. Modularity in a program is when all the different functions of the program are devided in different modules and at the end those modules are combined in order the program to work. Modularity does not make a program better but it really makes easy mentaining and further developing of the program, since everything is devided into different modules and it is not in one big file where a developer should wonder through until he finds what he needs. That is why bad modularity makes a program harder to develop by contributors. That is why projects that are not based on modular architecture will not have success in the bazaar way, which contradicts Raymond’s thesis that open source is a universally better approach.

Another main part of the bazaar way is the peer-review. The large-scale peer-review is one of the main differences between the cathedral and the bazaar ways. The bazaar style assumes that “given a large rough beta-testers and co-developer base, almost every problem will be characterized quickly and the fix obvious to someone.”(Raymond 1998a) Debugging requires less coordination than development, and this way it is faster and easier. The main premise for this is that more debuggers are willing to contribute to a shorter test-cycle without any additional cost. In other words “more users find more bugs because adding more users adds more ways of stressing a program”(Raymond, 2001b) another point of debugging is that it is more efficient when the users are also co-developers, which is the case in almost all open source projects. According to Raymond each tester “approaches the task of bug characterization with a slightly different perceptual set and analytical toolkit, a different angle on the problem.” (Raymond, 2001b)

There are thousands of open source projects currently existing and being developed. These projects include operating systems, programming languages, Internet utilities, and many more. However there are some that are notable for their size, accomplishments and success.


The brightest of them is Linux. It is an UNIX-like operating system. It provides the kernel that Richard Stallman and the GNU project needed so badly. Linux began as a hobby of a graduate student of University of Helsinki, called Linus Trovalds in 1991. Since then hundreds of programmers have contributed to the rapid improvement of the operating system. The Linux kernel development is largely coordinated by a “linux-kernel” mailing list. The list includes more that 200 active developers as well as many testers and debuggers. With the growth of the project Linus has passed some of the work to successors, but he still remains the final authority when it comes to decisions about kernel development. The Linux kernel is released under the GPL and official versions are available freely on the Internet. Linux is the most well-know open source product and has gained great popularity amongst Internet Service Providers (ISP) and scientific researchers. Recently, it has made commercial advances and is the only valuable alternative to Microsoft Windows NT. The only problem that exists with it and that is preventing Linux to become even more widespread amongst common users is that it is not user-friendly. It is a complicated operating system that cannot be easily used by the common household.  But once it becomes more user-friendly it will overcome Microsoft Windows, mainly because of its reliability and stability and also because of its flexibility. Linux is changing very fast, due to the great number of developers, which allows faster feedback on bugs, errors, or just needs of the user. And the main part is that it is absolutely free. And all software for Linux is also freely downloadable from the Internet.


However, nowadays more and more tools are made for this goal to be achieved. Particular examples are the KDE (Kde Desktop Environment) and the GNOME (GNU Network Object Model Environment). Those two are open source projects designed to give Linux a friendlier look, and easier control. KDE and GNOME are desktop environments, much like Windows, that allow similar and already known to the common user approaches to Linux.


Open source software is made by scattered all over the world programmers using the Internet as a mean of communication, bound on developing a certain software project by distributing its source code. The term open source software lies on the foundations of free software, but also extends it a bit. Different licenses, such as the GPL, have been created to formalize open source software. The Open Source Definition helps in evaluating those licenses.


There are thousands of open source projects currently existing. However those projects have to face the danger of not being user-friendly. The good point is that this danger is taken in consideration and there are many projects currently under development that are aiming to port open source software to the common user. This shows that there is more to be expected from the open source software (and Linux as part of it) in the future.  

Reference:

Internet Connectivity Glossary of Terms. (2001). [online] Available at: http://www.ianr.unl.edu/pubs/consumered/nf458.htm [ 2/12/2001]

Levy, Steven. (1984). Hackers; Heroes of the Computer Revolution. Anchor Press/Doubleday. [online]. Available at: http://sch57.msk.ru:8101/~khim/hackers/cover.html [19/10/2001].

Open Source Initiative. (2001). The Open Source Definition, Version 1.9 [online].                       Available from: http://www.opensource.org/osd.html [30/11/2001]. 

Raymond, E.S. (2001a). A Brief History of Hackerdom [online]. Available from: http://www.tuxedo.org/~esr/faqs/hacker-hist.html [5/11/2001]. 

Raymond, E.S. (2001b). The Cathedral and The Bazaarhttp://sagan.earthspace.net/~esr/writings/cathedral-bazaar/cathedral-bazaar.html [online]. Available from:  [5/11/ 2001]. 

Raymond, E.S. (2001c). Homesteading of the Noosphere [online]. Available from: http://sagan.earthspace.net/~esr/writings/homesteading/homesteading.html [6/11/2001]. 

Ritchie, D.M. (1979) The Evolution of Unux Time-Sharing System [online]. Available at: http://cm.bell-labs.com/cm/cs/who/dmr/hist.html [2/12/2001]. 

Stallman, R.S. (1993). The GNU Manifesto [online]. Available from: http://www.fsf.org/gnu/manifesto.html [7/11/2001]. 

Stallman, R.S. (2001).  Why “Free Software” is better than “Open Source” [online]. Available from: http://www.fsf.org/philosophy/free-software-for-freedom.html [27/11/2001]. 

The Free Software Foundation. (1991).GNU General Public License, Version 2 [online]. Available at: http://www.fsf.org/copyleft/gpl.html [28/11/2001]. 

The Free Software Foundation. (2001a). Overview of the GNU Project [online]. Available at: http://www.fsf.org/gnu/gnu-history.html [28/11/2001]. 

The Free Software Foundation. (2001b). What is Free Software Foundation [online]. Available at: http://www.fsf.org/fsf/fsf.html [28/11/2001]. 

The Free Software Foundation. (2001c). What is Free Software? [online]. Available at: http://www.fsf.org/philosophy/free-sw.html [28/11/2001]. 

The Free Software Foundation. (2001d). What is Copyleft? [online]. Available at: http://www.gnu.org/copyleft/copyleft.html [28/11/2001]. 

Kim Johnson (2001) Open-Source Software Development [online]. Available at: http://pages.cpsc.ucalgary.ca/~johnsonk/SENG/SENG691/open.htm 







10

